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Abstract—Among various multiple-input multiple-output
(MIMO) detection algorithms, message passing algorithms
(MPAs) have been widely considered to balance performance
and complexity. Damping factors can greatly affect MPAs’
convergence behavior and stability. Deep neural network (DNN)
based detectors with learnable damping factors have shown im-
proved convergence performance in MIMO systems but require
retraining in different system configurations. In this paper, a
pre-trained hybrid-damping (PHD) message passing detection
(MPD) for multi-scenarios using multi-objective evolutionary
algorithm (MOEA) is proposed, which only requires one pre-
training step and can be adapted to multiple scenarios. Numerical
results indicate that the proposed PHD scheme can provide better
convergence and flexibility than unified damping (UD) and DNN-
based ones. Furthermore, the proposed PHD scheme can also be
applied to other MPAs.

Index Terms—MIMO detector, message passing, damping
factor, multi-objective evolutionary algorithm.

I. INTRODUCTION

In MPAs, the damping factor, which can affect the conver-
gence behavior and stability of algorithms, controls the amount
of adjustment made to the updated messages in each iteration.
The choice of damping factor depends on various factors, such
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as the channel conditions, system parameters, and performance
requirements. In practice, the damping factor, being unified at
each iteration, is often tuned empirically through simulations
or experiments to find the optimal value for a specific MIMO
system configuration [5], which is laborious. Recently, model-
driven detectors, which unfold the existing MPAs and map
each iteration to the layer of deep neural network (DNN)
with learnable damping factors, have attracted much attention
[6], [7]. By exploiting the power of DNN, model-driven
detectors realize better BER and convergence performance as
compared to conventional MPAs without learnable damping
factors. However, DNN-based MPAs usually require retraining
in different scenarios, being inflexible in practical use.

In this paper, a pre-trained1 hybrid-damping (PHD) MPD
based on multi-objective evolutionary algorithm (MOEA) is
proposed. The main contributions of this paper are listed as
follows,

1) The PHD MPD for multi-scenarios is modeled as a
multi-objective optimization problem (MOOP). The de-
termination of the converging iteration number is also
illustrated in detail.

2) The MOEA optimization for solving hybrid damping
factors is presented, including initialization, fitness, se-
lection, crossover, mutation, and stopping criterion.

3) Numerical results are presented to demonstrate that the
proposed PHD scheme only requires one pre-training
step and can greatly improve the convergence per-
formance as compared to unified-damping (UD) one
under different system configurations. Furthermore, the
superiority of PHD scheme compared to the DNN-based
one is presented.

The structure of this paper is organized as follows. In
Section II, we review the basic theory of MIMO system model,
MPD, and MOEA. In Section III, the proposed PHD MPD is
demonstrated in detail. The numerical results of the proposed
PHD MPD are presented in Section IV. Section V concludes
the entire paper.

1Here, pre-trained means the hybrid damping factors are trained offline and
fixed for online detection.
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In the context of the ever-increasing demand for 

communication rate, multiple-input multiple-output (MIMO)

has gained wide attention recently due to its potential for high 

spectral efficiency. The complexity of optimal MIMO

detection algorithm, maximum-likelihood (ML) or maximum a 

posterior (MAP), becomes unaffordable in massive MIMO

scenarios. To address this issue, message passing algorithms

(MPAs), e.g., expectation propagation (EP) [1], approximate

message passing (AMP) [2], and channel hardening-exploiting

message passing (CHEMP) [3], have been widely considered

in the literature. In [4], a CHEMP detector with 

nearestneighbor approximation (NNA), named message 

passing detection (MPD), is proposed and implemented, 

presenting nearoptimal performance in Rayleigh fading 

channels and superior hardware efficiency compared to other 

state-of-the-art (SOA) detectors.
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Notations: In denotes the n× n identity matrix. X⊤ is the
transpose operation of the matrix X. N (µ,Σ) denotes the
multi-variate Gaussian distribution with mean vector µ and
covariance matrix Σ.

II. PRELIMINARY

In this section, we introduce the narrow-band MIMO system
model, MPD, and MOEA.

A. MIMO System Model

We consider the narrow-band MIMO communication sys-
tem with Nt transmitting (Tx) antennas and Nr receiving (Rx)
antennas. The corresponding system model in real domain can
be expressed as,

y = Hx+ n, (1)

where y ∈ R2Nr×1 and x ∈ Ω2Nt×1 are the received
and transmitted vectors, respectively. Q-QAM modulation is
assumed here and Ω = {ω1, ..., ω√

Q} is the set of in-
phase or quadrature parts of points in the complex constel-
lation. H ∈ R2Nr×2Nt is the channel matrix, assumed to be
the independent and identically distributed (i.i.d.) Rayleigh
channel with mean zero and variance 1/Nr in this paper.
n ∼ N

(
0, σ2

nI2Nr

)
is the additive white Gaussian noise

(AWGN) vector. We assume the channel state information
(CSI) is perfectly known at the receiver.

B. MPD

The MPD detector is summarized in Algorithm 1, where
z = H⊤y denotes the received vector after matched filter
and zi is the i-th element of z. J = H⊤H is the Gram
matrix and Jij is the (i, j)-th element of J. L is the maximum
iteration number of MPD. Es denotes the mean symbol energy.
δ(l)(l = 1, ..., L) denotes the damping factor at l-th iteration.
In conventional UD MPD, δ(l)(l = 1, ..., L) maintains the
same value throughout the iteration. m1 and m2 denote the
index of the first and second nearest neighbor symbols in real
constellation Ω, respectively. The probabilities ρ

(l)
i (ωm) can

be computed as follows,

ρ
(l)
i (ωm) =


1

1 + exp(β
(l)
i )

, m = m1,

1− ρ
(l)
i (ωm1

), m = m2,

0, otherwise,

(2)

and

β
(l)
i = −

∣∣∣∣∣∣
sω

(
z
(l)
i − aω

)
τ
(l)
i

∣∣∣∣∣∣ , (3)

where aω = (ωm1 + ωm2)/2 and sω = ωm2 − ωm1 .

Algorithm 1: MPD Detector

Input : z,J, σ2
n, L, δ

(l)(∀l = 1, ..., L),
x̂
(1)
i = 0, ξ

(1)
i = Es(∀i = 1, ..., 2Nt).

Output: x̂(L+1)
i (∀i = 1, ..., 2Nt).

1 for l = 1, 2, ..., L do
2 for i = 1, 2, ..., 2Nt do
3 µ

(l)
i =

∑2Nt
j=1,j ̸=i Jij x̂

(l)
j ;

4 ζ
(l)
i =

∑2Nt
j=1,j ̸=i J

2
ijξ

(l)
j + σ2

n;
5 r

(l)
i = (z

(l)
i − µ

(l)
i )/Jii;

6 τ
(l)
i = ζ

(l)
i /J2

ii;
7 find m1 and m2;
8 calculate ρ

(l)
i (ωm);

9 x̂′
i =

∑√
Q

m′=1 ωm′ρ
(l+1)
i (ωm′);

10 ξ′i =
∑√

Q
m′=1 ω

2
m′ρ

(l+1)
i (ωm′)− (x̂′

i)
2;

11 x̂
(l+1)
i = δ(l)x̂′

i + (1− δ(l))x̂
(l)
i ;

12 ξ
(l+1)
i = δ(l)ξ′i + (1− δ(l))ξ

(l)
i ;

C. MOEA

MOEA is a class of evolutionary algorithms designed to
solve MOOP, providing an effective approach for problems
with multiple conflicting objectives. In MOEA, each individual
represents a potential solution and is evaluated based on
its performance across multiple objective functions. These
individuals evolve through genetic operators, such as selection,
crossover, and mutation, to generate new candidate solutions,
where population diversity is maintained to effectively explore
the solution space of the multi-objective problem.

One of the key advantages of MOEA is its ability to
generate a set of solutions that exhibit balance across multiple
objectives, rather than a single optimal solution. This allows
decision-makers to trade-off and select among multiple ob-
jectives, gaining a better understanding of the problem nature
and various trade-off possibilities. Commonly used MOEAs
include non-dominated sorting genetic algorithm II (NSGA-
II), adaptive geometry estimation based MOEA (AGE-MOEA)
[8], etc. In this paper, we adopt AGE-MOEA for solving the
MOOP due to its superior performance and low complexity
as compared to conventional MOEA, e.g., NSGA-II.

III. THE PROPOSED PHD SCHEME

In this section, we first illustrate the optimization model of
hybrid damping factors. Then the determination of converging
iteration number is provided. Finally, the MOEA optimization
process for hybrid damping factors is introduced in detail.

A. Optimization Model

The proposed PHD scheme aims at minimizing the converg-
ing iteration number while maintaining the BER performance
under different system configurations. Specifically, the prob-
lem can be modeled as follows,

min
δ

L̃m, m = 1, ...,M,

s.t. P̄
(L̃m)
m /P

(L)
m − 1 ≤ ε1, m = 1, ...,M,

δ(l) ∈ {∆, 2∆, ..., 1}, l = 1, ..., L.

(4)
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Here, δ = {δ(1), ..., δ(L)} is the set of learnable damp-
ing factors. L̃m denotes the converging iteration number of
PHD MPD under system configuration Sm. Sm includes
Nt, Nr, Q, and tested signal-to-noise ratio (SNR) R =
10 log

(
E[∥Hx∥2]/E[∥n∥2]

)
, which is abbreviated as Sm =

(Nt, Nr, Q,R) in the following. M denotes the number of
different configurations considered. P̄ (L̃m)

m is the converging
bit error rate (BER) of PHD MPD with δ under system
configuration Sm, while P

(L)
m is the converging BER of UD

MPD. Here, L needs to be set to a value large enough for UD
MPD to converge. ε1 is the threshold of relative BER error
between P̄

(L̃m)
m and P

(L)
m , which measures the loss of BER

performance of PHD MPD.
Though the values of δ(l) are taken continuously within

the interval (0, 1], the convergence performance of MPD is
not highly sensitive to δ(l). Thus, δ(l) can take values from a
discrete set instead, that is δ(l) ∈ {∆, 2∆, ..., 1} with ∆ being
the step size, which greatly reduces the search space of δ(l).
The value of the step size ∆ could be adjusted flexibly to
enable different accuracy of the damping factor.

B. Determination of L̃m

Considering that the convergence of PHD MPD with fea-
sible δ is guaranteed due to the constraints in Eq. (4), we
propose a method for determining the converging iteration
number L̃m based on the relative BER error. Specifically, at
l-th (l > 1) iteration, determine whether the relative error
between P̄

(l−1)
m and P̄

(l)
m is less than the threshold ε2. If so,

the detector has converged; otherwise, it is not converging.
Therefore, the method of obtaining L̃m can be summarized in
Algorithm 2.

Algorithm 2: Computing L̃m

Input : ε2, P̄ (l)
m (∀l = 1, ..., L).

Output: L̃m.
1 l = L;
2 while l > 1 do
3 if P̄ (l−1)

m /P̄
(l)
m − 1 > ε2 then

4 break;

5 l = l − 1;

6 L̃m = l;

C. MOEA Optimization

The gene is defined as δ(l)(l = 1, ..., L), while the chromo-
some is defined as the sequence of genes (i.e., δ). Population
is a collection of chromosomes (also called individual). Indi-
viduals with good fitness survive as the “optimal” solutions
through evolution. The proposed MOEA-based PHD MPD is
illustrated as follows,

• Initialization: In initialization step, each δ(l) is ran-
domly generated from set {∆, 2∆, ..., 1} to compose
a chromosome and the initial population contains Npop
chromosomes.

• Fitness: The fitness of an individual denotes its proximity
to meeting the overall requirements of the intended solu-
tion. It is related to the object functions and constraints
in Eq. (4). Individuals with high fitness are more likely
to survive and reproduce the next generation. In AGE-
MOEA, two metrics, i.e., non-dominated rank and sur-
vival score, are considered to guarantee both the diversity
and proximity of solutions.

• Selection: Selection operators are used to select individu-
als from the current population for the creation of the next
generation. The binary tournament selection is considered
in this paper.

• Crossover: The crossover operator recombines the ge-
netic information of two or more parent individuals to
generate new offspring individuals, increasing the diver-
sity of the population and facilitating the evolutionary
process. Considering the problem here is real-coded,
simulated binary crossover (SBX) is adopted.

• Mutation: The mutation operator plays an important
role in maintaining genetic diversity and exploring new
regions of the search space, introducing random changes
to the genetic information of individuals. The polynomial
mutation (PM) is considered here.

• Stopping Criterion: The evolutionary process stops once
it exceeds the maximum generation.

Overall, the pre-training process of the hybrid-damping
factor can be summarized as Algorithm 3. After the set of
optimal damping factors is obtained, it is used for online
detection based on Algorithm 1.

Algorithm 3: Pre-training Hybrid Damping Factors.
1 Initialize population with Npop individuals;
2 repeat
3 Generate offspring with selection, crossover, and mutation;
4 Combine current and offspring population;
5 Fast non-dominated sort;
6 Compute survival scores;
7 Form next population according to non-dominated rank

and survival scores;
8 until Meet stopping criterion;
9 Obtain the set of optimal δ;

IV. SIMULATION RESULTS

In this section, the implementation details are first demon-
strated. Then the numerical results of the proposed PHD MPD
are presented, compared with minimum mean square error
(MMSE), UD MPD [3] and DNN-based MPD [7].

A. Implementation Details

We consider a massive MIMO system with M = 3 different
configurations, which are listed in Table I. Here, we choose the
value of R to guarantee the BER of MPD falls below 10−3,
considering that MPD is more sensitive to damping factors
at low BER point. The population number Npop is set to 50,
and the maximum generation is set to 100. AGE-MOEA with
binary tournament selection, SBX, and PM is adopted as the
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TABLE I: System Configurations.

m Nt Nr Q R

1 16 128 256 20

2 32 128 256 24

3 48 128 64 20

B. Numerical Results

L̃1

L̃2

L̃3

5 10 15 20 25

Proposed PHD MPD
DNN-based MPD
UD MPD w/ δ = 0.5

UD MPD w/ δ = 0.6

UD MPD w/ δ = 0.7

Fig. 1: The objective space comparison of PHD, UD, and
DNN-based MPDs using radar plot.

Fig. 1 presents the objective space comparison of the
proposed PHD MPD, UD MPD, and DNN-based MPD using
radar plot. PHD scheme has 12 different non-dominated solu-
tions, and some are overlapped because of having the same
values of objective function. UD scheme with δ = 0.8 is
not plotted because of divergence under configuration S3. The
results from Fig. 1 indicate that the proposed PHD MPD have
smaller L̃1, L̃2, and L̃3 than UD MPD and DNN-based MPD,
demonstrating the efficiency of the proposed PHD scheme in
terms of convergence performance.

Selecting a feasible δ from the non-dominated solutions,
Fig. 2 gives the BER performance of the proposed PHD
MPD, UD MPD, and DNN-based MPD versus iterations
under configuration S2. The results show that the proposed
PHD scheme converges faster than UD and DNN-based ones
without loss of BER performance. Fig. 3 compares the BER
performance among MMSE detector, proposed PHD MPD,
UD MPD, and DNN-based MPD under configurations S2 and
S3. It can be seen from the figure that the proposed PHD

5 10 15 20 25 30
10-4

10-3

10-2

10-1

Iterations

B
E

R

MMSE
Proposed PHD MPD
DNN-based MPD
UD MPD w/ δ = 0.5

UD MPD w/ δ = 0.6

UD MPD w/ δ = 0.8

Fig. 2: BER performance of different algorithms versus itera-
tions under configuration S2.

scheme achieves similar BER performance as UD and DNN-
based MPDs, all superior to the MMSE detector.

10 12 14 16 18 20 22 24
10-4

10-3

10-2

10-1

S3 S2

Es/N0 [dB]

B
E

R

MMSE
Proposed PHD MPD
UD MPD
DNN-based MPD

Fig. 3: BER comparison of MMSE, proposed PHD MPD (S2 :
L = 11; S3 : L = 13), UD MPD (S2 : δ = 0.8, L = 13;
S3 : δ = 0.7, L = 20), and DNN-based MPD (S2 : L = 13;
S3 : L = 16).

To further illustrate the superiority of PHD scheme, the
trade-off of BER and converging iteration number under differ-
ent configurations is presented in Fig 4. Here, vmin : d : vmax

denotes the damping factor of UD MPD changing from vmin

to vmax with interval d. For example, the direction of the
arrow in Fig. 4a denotes the change in damping factor value:
0.5 → 0.6 → 0.7 → 0.8 → 0.9. Though UD MPD can
have the same iterations as PHD one when δ = 0.9 under
configuration S1, its convergence performance is worse than
PHD one under S2 and S3. Similarly, the proposed PHD MPD
also presents better convergence performance than the DNN-
based one.

C. Complexity

The proposed PHD MPD includes two steps: offline pre-
training and online detection. Though the training procedure
can be done offline by powerful computation devices, PHD

4

MOEA for optimizing the hybrid damping factors. ε1, ε2, and
∆ are fixed to 0.5, 0.02, and 0.05, respectively. Our simulation
is performed in Pymoo 0.6.0 [9] with AMD Ryzen™ 9 5950X
CPU and NVIDIA Tesla P40. The δ for UD MPD is set to
0.5 and L = 30, which is enough for MPD to converge in the
3 configurations. DNN-based MPD with learnable damping
factors is trained separately in 3 different configurations.
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UD MPD
DNN-based MPD
Proposed PHD MPD

(a) S1 = (16, 128, 256, 20)

10 12 14 16 18 20
10-4

10-3

10-2

Iterations

B
E

R

UD MPD
DNN-based MPD
Poporsed PHD MPD

(b) S2 = (32, 128, 256, 24)

12 16 20 24
10-4

10-3

10-2

Iterations

B
E

R

UD MPD
DNN-based MPD
Poporsed PHD MPD

(c) S3 = (48, 128, 64, 20)

Fig. 4: Trade-off of BER and iterations at convergence under different configurations. The change of damping factor in UD
scheme: (a) 0.5 : 0.1 : 0.9; (b) 0.5 : 0.05 : 0.9; (c) 0.5 : 0.1 : 0.8.

MPD can find damping factors suitable for multi-scenarios,
while DNN-based MPD requires training in different scenarios
to obtain targeted damping factors. For online detection step,
the proposed PHD MPD has smaller converging iteration
number than UD and DNN-based ones (shown in Fig. 5),
requiring fewer computation resources.

S1 S2 S3

0

5

10

15

20

System configurations

It
er

at
io

ns

UD MPD DNN-based MPD Poprosed PHD MPD

Fig. 5: Comparison of converging iteration number between
UD, DNN-based, and PHD MPDs under different configura-
tions.

In summary, the detailed comparison between the proposed
PHD MPD, UD MPD, and DNN-based MPD are listed as
follows:

1) Compared with UD MPD: The proposed scheme has
faster convergence while maintaining the BER per-
formance, resulting in lower complexity and higher
throughput;

2) Compared with DNN-based MPD: The proposed scheme
has faster convergence than the DNN-based one. The
training process of the proposed scheme is unsupervised,
requiring no labeled data, while DNN-based MPD needs
labeled data. Only one training procedure is required
in advance for the proposed scheme and the training
results can be reused for different system configurations,
while DNN-based MPD requires retraining in different
scenarios.

V. CONCLUSION

In this paper, we proposed a PHD MPD applicable to
multiple MIMO scenarios. By leveraging MOEA, the PHD
scheme only requires one pre-training and can accelerate the
convergence rate of conventional UD MPD under different
system configurations. Numerical results demonstrate that the
proposed PHD scheme provides better convergence perfor-
mance compared to UD and DNN-based ones. Also, the
flexibility of the proposed PHD scheme is demonstrated by
comparing it to the DNN-based one. Note that the proposed
PHD scheme can also be applied to other iterative MPAs,
which will be investigated in our further works.
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